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Abstract. High-resolution, spatially distributed process-based (PB) simulators are widely employed in the study of complex 

watershed processes and their responses to a changing climate. However, calibrating these simulators to observed data remains 

a significant challenge due to several persistent issues including: (1) intractability stemming from the computational demands 

and complex responses of simulators, which renders infeasible calculation of the conditional probability of parameters and 

data, and (2) uncertainty stemming from the choice of simplified model representations of complex natural hydrologic 20 

processes. Here we demonstrate how Simulation-Based Inference (SBI) can help address both these challenges for parameter 

estimation. SBI uses a learned mapping between parameter space and observed data to estimate  parameters for generation of 

calibrated model simulations. To demonstrate the potential of SBI in hydrologic modelling, we conduct a set of synthetic 

experiments to infer two common physical parameters, Manning's coefficient and hydraulic conductivity, using a 

representation of a snowmelt-dominated catchment in Colorado, USA. We introduce novel deep learning (DL) components to 25 

the SBI approach, including an 'emulator' as a surrogate for the process-based simulator to rapidly explore parameter responses. 

We also employ a density-based neural network to represent the joint probability of parameters and data without strong 

assumptions about its functional form. While addressing intractability, we also show that where uncertainty about model 

structure is significant, SBI can yield unreliable parameter estimates. Approaches to adopting the SBI framework to cases 

where model structure(s) may not be adequate are introduced using a performance-weighting approach.  30 

 

1 Introduction 

Robust hydrologic tools are necessary to understand and predict watershed behaviors in a changing climate (Condon, 

2022). This need is underscored by long-term drought in the American West (Williams et al., 2022), which has led to the 

withering of water supplies from the Colorado River (Santos and Patno, 2022), increased groundwater pumping (Castle et al., 35 
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2014), and uncertainty about what is next (Tenney, 2022). Hydrologic simulators that represent physical processes and 

connections within the hydrologic cycle (Paniconi and Putti, 2015) are very commonly used tools to address these needs.  

These 'process-based' (PB) simulators explicitly represent hydrologic states and fluxes at multiple scales based upon physics 

first-principles (Fatichi et al., 2016). Watershed scientists often use PB simulators to answer ‘what if’ questions about behavior 

of watershed snowpack, soil moisture, and streamflow in a changed future because they encode fundamental processes, and 40 

not just historical data (Maxwell et al., 2021).  

The behaviors and skills of these PB watershed simulators strongly depend on spatially varying parameters (Tsai et 

al., 2021). Parameters represent the structure and physical properties of the hydrologic system, such as the roughness of the 

land surface (i.e., Manning's Coefficient, M) or the water-transmitting properties of the subsurface (i.e., Hydraulic 

Conductivity, K). There are many approaches to parameter determination in hydrology (Beven and Binley, 1992.; Gupta et al., 45 

1998; Bastidas et al., 1999; Hunt et al., 2007; Vrugt and Sadegh, 2013; White et al., 2020; Tsai et al., 2021). The variety of 

approaches and long history of research in this area underscores that there is “no obvious formulation of [parameter 

determination] that previous generations of modelers have overlooked” (Hunt et al., 2007). Yet, the question of how best to 

infer parameters for PB simulators remains unsettled.  

Parameter determination remains a challenge with watershed PB simulators, and an impediment to robust, physics-50 

informed hydrologic predictions. There are two related and ongoing difficulties that make parameter determination a very 

challenging problem. The first is the problem of intractability. For a dynamical watershed simulator with a range of possible 

model configurations, many combinations of parameters may be plausible given observed data (Beven, 2011; Nearing et al, 

2015). Therefore, many have argued it may be preferable to simulate distributions of hydrologic variables and the underlying 

parameters that give rise to them (e.g. Vrugt and Sadegh, 2013). Intractability arises when these distributions cannot be 55 

approximated for theoretical or computational reasons. For example, large-scale, high-resolution PB simulations can require 

massively parallel, high-performance computing (e.g., Maxwell et al., 2015), limiting the number of exploratory model runs 

due to computational demands. A solution to the problem of intractability needs to efficiently approximate complex 

distributions of probable parameters given observations with a sufficient level of accuracy and precision.  

Deep learning (DL) may provide new opportunities vis-à-vis the intractability problem in parameter determination. 60 

In DL, behaviors are learned from data, as opposed to PB approaches, which derive behavior from established theory. The 

Earth Sciences have recently seen greater adoption of DL approaches (Wilkinson et al., 2016), for example in streamflow 

prediction (Kratzert et al., 2018). However, DL methods are not widely used in watershed prediction due to the “inadequacy 

of available data in representing the complex spaces of hypotheses” (Karpatne et al., 2017), such as watershed observations. 

Recently, there has been a push for methods that can incorporate process understanding into DL models (e.g., Zhao et al., 65 
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2019; Jiang et al., 2020). Still, studies are rare that employ DL to improve PB simulator performance by aiding in the hunt for 

better parameters1 (e.g., Tsai et al., 2021).  

Simulation-based inference (SBI) is a DL-informed approach to PB parameter determination that has shown promise 

in particle physics (Cranmer et al., 2020), cosmology (Alsing et al., 2019), and neural dynamics (Lueckmann et al., 2017). In 

SBI, a neural network is employed to approximate the conditional density of parameters and simulated outputs from the 70 

behavior of a simulator. That conditional relationship can be evaluated using observations to estimate a set of probable 

parameters. Surrogate simulators are neural networks that emulate the complex interdependence of variables, inputs, and 

parameters encoded in PB simulators, such as watershed simulators (Maxwell et al., 2021; Tran et al., 2021). Once trained, 

surrogate simulators can preserve fidelity to the PB simulator, run at a fraction of the cost, and speed up the exploration of 

parameter space. Restated, this approach uses one neural network (the 'surrogate’) to quickly generate thousands of simulations 75 

that are utilized to train another neural network (via conditional density estimation) to develop a statistical representation of 

the relationship between parameters and simulated data. Via SBI, this statistical representation can be used to infer distributions 

of PB parameter values based on observed data. Assuming the model is correctly specified, the inferred set of parameters 

accurately and precisely reflects the uncertainty of the parameter estimate (Cranmer et al., 2020). To our knowledge, 

applications of SBI in hydrology have been limited (e.g., Maxwell et al., 2021). A brief introduction to SBI is presented in the 80 

background section.  

A second challenge to parameter determination is the problem of epistemic uncertainty arising from limited 

knowledge, data, and understanding of complex hydrologic processes. The sources of epistemic uncertainty in the modelling 

process are various, including: uncertainties in data (for example, in model inputs and misleading information in observed data 

used to train and assess models); uncertainties derived from performance measures and information to omit; and uncertainties 85 

about model structure, which arise from the inherent challenge of choosing simplified models to represent complex processes 

(Leamer, 1978; Beven & Binley, 1992; Draper,1995; Gupta et al., 2012; Nearing et al., 2015). In this work, we focus on a 

subclass of epistemic uncertainty of appropriate model structure(s) known as “model misspecification”, in which a unique and 

optimal model structure is assumed to exist but is unknown. Discounting the role of uncertainty about appropriate model 

structures can have profound consequences on the insights we draw from inference tasks like parameter determination .  90 

A common challenge is the potential under-representation of uncertainty stemming from the choice of model 

structure. This issue becomes evident when inference approaches yield parameter estimates that are overly confident, which 

can be problematic when a more conservative estimate that accounts for the inherent uncertainties about model structure is 

preferred (Beven, 2011; Cranmer, 2020; Hermans, 2021). One potential remedy is the use of ensemble modelling, where 

multiple model structures are employed to capture a range of plausible behaviours. The challenge then becomes deciding upon 95 

which model structures to consider and how to combine them. Generalized Likelihood Uncertainty Estimation, or GLUE 

 
1 We make a distinction between the parameters of PB simulators and the parameters embedded in neural networks, which are optimized during training by 

backpropagation. In this report, we almost-exclusively refer to the parameters of PB simulators even as we discuss the capacity of neural networks to learn 

and represent them.   
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(Beven and Binley, 1992; Beven and Binley, 2014), associates a measure of belief with each selected model structure and 

configuration, forming a conceptually simple way of weighting ensembles of predictions to estimate uncertainty stemming 

from various sources. A similar principle underlies Bayesian Model Averaging, or BMA (Leamer, 1978; Hoeting et al, 1999; 

Raftery et al., 2005; Duan et al., 2007). While GLUE and BMA differ in their implementations, they both adhere to the principle 100 

that models exhibiting behaviours closely aligned with observations should hold stronger credibility and carry greater 

significance within an ensemble of models; and non-behavioural model structures should be assigned a low probability or 

rejected. In the case of GLUE, this measure of credibility is derived from a modeler’s choice of metric, or informal likelihood 

function (e.g. Smith et al, 2008). GLUE and BMA are further described in the background section. 

 The primary objective of this work is to demonstrate an approach to generating accurate and precise estimates of the 105 

spatially distributed parameters of a hydrologic simulator where conventional methods might struggle due to the intractability 

problem. A secondary goal is to explore how this workflow could be extended to yield meaningful parameter estimates 

considering uncertainty about model structural adequacy. Surrogate-derived SBI is utilized to address the problem of 

intractability in complex parameter spaces using a statistical, deep-learning approach. The problem of model structural 

adequacy is confronted using a quasi-BMA approach that utilizes an informal likelihood to weight the credibility of parameter 110 

estimates from SBI.  

We primarily use synthetic test cases with diagnosable degrees of uncertainty to test the performance of the inference 

workflow. Here, we determine the physical parameters of a headwater subbasin of the Upper Colorado River Basin by 

calibrating a PB watershed simulator to historical streamflow observations. We utilize SBI in tandem with a Long Short-Term 

Memory (LSTM) surrogate for the PB simulator ParFlow (Jones and Woodward, 2001; Maxwell and Kollet, 2006; Maxwell 115 

et al., 2015a) to rapidly generate probable configurations of Hydraulic Conductivity (K) and Manning’s Coefficient (M). 

Furthermore, we use the inferred distribution of parameters to generate streamflow predictions. We explore the influence of 

observed data on parameter inference with a set of experiments that systematically vary the degree of uncertainty associated 

with how synthetic and real observations relate to the simulator (i.e., misspecification). In the latter experiments, a form of 

BMA is utilized to improve robustness of the parameter estimates to misspecification, in the extreme case by assigning zero 120 

probability to all models in the set. The experiments are outlined in Section 3.1.  

Novel aspects of the present analysis that bear noting include: (1) the usage of DL in conjunction with a PB watershed 

simulator to improve its performance; (2) the novel application of density-based SBI to the domain of hydrology; and (3) the 

usage of informal likelihood measures to directly assign model probabilities to parameter estimates made by SBI in a manner 

similar to BMA. The significance of this work is to develop a framework to tackle harder inference problems in watershed 125 

modeling, and other domains of the Earth Sciences where complex PB simulators are used.  
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2 Background of inference-based approaches to hydrologic parameter determination 

This section provides a brief background of methods used for parameter determination in watershed modeling and 

related problems. We provide context relevant to understanding the “point of convergence” (Cranmer et al., 2020) we call 130 

simulation-based inference (SBI), and how it is similar to and different from some other approaches to inference. We start with 

a general overview of inference. Next, we discuss the traditional formulation of the inference of parameters using Bayes’ 

theorem (section 2.1). We then introduce what sets SBI apart from these traditional approaches (section 2.2). Next, we discuss 

the role of machine learning in SBI (section 2.3). Finally, we introduce some approaches to parameter estimation under 

epistemic uncertainty that have been applied in hydrology (2.4). We define 'inference' as using data (observations) and a 135 

simulator to describe some unobserved characteristic of the system we are interested in (Cranmer et al., 2020; Wikle and 

Berliner 2007).  

2.1 Bayesian inference 

Bayesian inference is a common method to extract information from observations. The essence of this formulation of 

inference unfolds in three steps (Wikle and Berliner, 2007): (1) Formulate a ‘full probability model’, which emerges from the 140 

joint probability distribution of observable and unobservable parameters; (2) Infer the conditional distribution of the parameters 

given observed data; (3) Evaluate the fit of the simulator (given parameters inferred in step 2) and its ability to adequately 

characterize the process(es) of interest. 

Traditionally, to tackle inference problems we apply Bayes’ Theorem. For illustration, let θ denote unobserved 

parameters of interest (such as Hydraulic Conductivity); and let Y represent simulated or observed data of the variable of 145 

interest (such as streamflow). The joint probability p(θ, Y) can be factored into the conditional and marginal distribution by 

applying Bayes’ Rule, such that we obtain: 

 𝑝(𝜃|𝑌)  =
𝑝(𝑌|𝜃) 𝑝(𝜃)

𝑝(𝑌)
             (1) 

Where,  

● The data distribution, p(Y|θ), is the distribution of data given unobservable parameters. This distribution is referred 150 

to as the likelihood when viewed as a function of θ for a fixed Y. The likelihood function of “implicit” simulators 

(such as those used in watershed modeling) is often regarded as ‘intractable’ – i.e., its form cannot be evaluated 

(integrated), at least not in a computationally-feasible way (Cranmer et al., 2020). 

● The prior distribution, p(θ), is our a priori understanding of unobservable parameters. The prior often results from a 

choice made by the domain expert. For example, in watershed modeling the prior distribution arises from a belief 155 

about the possible structures and magnitudes of parameters (for example, hydraulic conductivity) in a study domain, 

as well as the probability that they could be observed. 
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● The marginal distribution, p(Y), can be thought of as a normalizing constant or ‘evidence’. In practice, this distribution 

is rarely computed as it contains no information about the parameters. As such, we do not include P(Y) and instead 

work with the unnormalized density provided by Equation 2: 160 

𝑝(𝜃|𝑌)  ∝  𝑝(𝑌| 𝜃) 𝑝(𝜃)           (2) 

● The posterior distribution, p(θ|Y), which is the distribution of unobservable parameters given the data. The posterior 

is the primary goal of Bayesian inference; it is proportional to the product of our prior knowledge of parameters and 

the information provided in our observations.  

Inference conducted using a Bayesian paradigm has a long history in computational hydrology (Vrugt and Sadegh, 2013). 165 

However, applications have been somewhat limited due to challenges centering on the intractability of the data distribution, 

p(Y|θ), for watershed simulators with many parameters.  

2.2 Simulation-based inference 

SBI is a set of methods that attempt to overcome the intractability of the data distribution by learning the form of the 

posterior distribution directly from the behavior of the simulator itself (Tejero-Cantero et al., 2020). The classic approach is 170 

Approximate Bayesian Computation (ABC), which compares observed and simulated data, rejecting and accepting simulation 

results based on some distance measure (Fenicia et al., 2018; Vrugt and Sadegh, 2013; Weiss and von Haeseler, 1998). While 

this approach has been widely used, it suffers from a range of issues, including poor scaling to high-dimensional problems 

(resulting in the need for summary statistics), and uncertainty arising from the selection of a distance threshold (Alsing et al., 

2019). Additionally, in traditional ABC it is necessary to restart the inference process as new data become available 175 

(Papamakarios and Murray, 2016), making it inefficient to evaluate large numbers of observations (Cranmer et al., 2020). 

SBI methods predicated on density estimation enable an alternative that does not suffer from the same shortcomings 

of ABC. The density estimation approach aims to train a flexible density estimator of the posterior parameter distribution from 

a set of simulated data-parameter pairs (Alsing et al., 2019). Some of the key advantages of a density estimation approach over 

ABC: (a) it represents the posterior2 distribution parametrically (as a trained neural network) that can be reused to evaluate 180 

new data as it comes available; (b) it drops the need for a distance threshold by targeting an ‘exact’ approximation of the 

posterior; (c) it more efficiently uses simulations by adaptively focusing on the plausible parameter region (Papamakarios and 

Murray, 2016). 

One general purpose workflow that we employ in this paper uses a neural density estimator to learn the distribution 

of streamflow data as a function of the physical parameters of the simulator and employs active learning algorithms to run 185 

simulations in the most relevant regions of parameter space (Alsing et al., 2019; Lueckmann et al., 2017). The SBI workflow 

is further described in Sect. 3.5, and the neural density estimator is described in Sect. 3.6.  

 
2 We share the literature’s tendency to use ‘conditional’ and ‘posterior’ density interchangeably; denotations of 𝑝(𝜃 | 𝑌 =  𝑌𝑇𝑟𝑢𝑒), for the posterior density 

evaluated at an observation 𝑌𝑂𝑏𝑠; and 𝑝(𝜃 | 𝑌), for conditional density representative of a large set of simulated {θ, Y}, are used when possible to reduce 

ambiguity. 
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2.3 The role of Machine Learning in SBI 

Due to advances in the capacity of neural networks to learn complex relationships, we can learn high-dimensional 

probability distributions from data in a way that was hardly possible before (Cranmer et al., 2020). This has led to strong claims 190 

in other fields, including cosmology and computational neuroscience, regarding the potential of SBI to “shift the way 

observational [science] is done in practice” (Alsing et al., 2019). While our implementation is described in more detail 

throughout the methods section, we direct readers to the literature for a broader (Cranmer et al., 2020) and deeper 

(Papamakarios and Murray, 2016) understanding of density based SBI. 

Learning the full conditional density p(θ|Y) requires many simulated parameter-data pairs: thousands (or hundreds of 195 

thousands) of forward simulations. This presents a challenge with some high-resolution PB simulators, where each forward 

simulation can take hours of compute time to run. Many have noted that deep-learned surrogate simulators can help; after an 

initial simulation and training phase, these simulators can be run forward very efficiently. “Surrogate-derived approaches 

benefit from imposing suitable inductive bias for a given problem” (Cranmer et al., 2020). In our case, this “inductive bias” is 

applied by learning the rainfall-runoff response of our PB domain using a Long Short-Term Memory (LSTM) model, a type 200 

of neural network that is suited for learning temporal patterns in data (Kratzert et al., 2018). The surrogate simulator is 

described in more detail in Sect. 3.3. Surrogate simulators can be used directly in the construction of viable posterior 

distributions of physical parameters and run at low-cost relative to the PB simulator.  

It should be noted that inference is always done within the context of a simulator (Cranmer, 2022). As such, if the 

structure of the model underlying the simulator is not adequate, it will affect inference in undesirable ways. Model structural 205 

inadequacy arises in the case when a simulator does not capture the behavior of the dynamical system, giving rise to mismatch 

between simulated and observed data (Cranmer et al., 2020). SBI conducted with structurally inadequate models can result in 

overly precise and otherwise erroneous inference. Similar concerns about the quality of inference arise from other potential 

sources of epistemic uncertainty in the modeling process, such as undiagnosed error in the data used to condition the model.  

 210 

2.4 Multi-model averaging and parameter determination in hydrology 

Bayesian Model Averaging (BMA) is an approach developed in the literature on linear regression (Madigan and 

Raftery, 1994) to address the problem of model selection. The principle is that basing inferences on one model structure alone 

is risky (Hoeting et al, 1999), since “part of the evidence is spent to specify the model” (Leamer, 1978, page 91). In its simplest 

form, BMA is a method of averaging the opinions of two or more competing model structures about a quantity of interest 215 

(Roberts, 1965). In dynamical systems modeling, this approach has been adopted to create weighted averages of forecasts 

derived from multiple types of models (i.e. Raftery et al, 2005). For example, BMA has been used to generate streamflow 

forecasts from multiple types of rainfall-runoff models (Duan et al, 2006). Results from these analyses shows that the weighted 

combination of models results in more accurate inference and descriptions of uncertainty than those derived from any one 

model structure.  220 

https://doi.org/10.5194/hess-2023-264
Preprint. Discussion started: 8 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

8 

 

In BMA, consider 𝑌𝑜𝑏𝑠  to be observed data, such as a streamflow time series; a set of models M1,…, Mk with shared 

or different underlying structures; and a quantity of interest △ to be inferred, such as a predicted variable or underlying set of 

parameters 𝜃. The probability of △ in the presence of Yobs can be represented as a weighted average, such that:  

 

𝑝(△ |𝑌𝑜𝑏𝑠) = ∑ 𝑝(△ |𝑀𝑘 , 𝑌𝑜𝑏𝑠)𝐾
𝑘=1 𝑤𝑘          (3) 225 

Where:  

• 𝑝(△ |𝑀𝑘, 𝑌𝑜𝑏𝑠) is the posterior distribution of △ given the model under consideration 𝑀𝑘 and 𝑌𝑜𝑏𝑠, which can be 

interpreted as the conditional probability of △ given that 𝑀𝑘 is the best model in the ensemble (Raftery et al, 

2005), and 

• 𝑤𝑘 is the posterior model probability, or the model weight. This can be interpreted as the posterior probability 230 

that model 𝑀𝑘 is the best one (Raftery et al, 2005)  

Even in relatively simple test cases (i.e. Raftery et al., 1997), the calculation of 𝑝(△ |𝑌𝑜𝑏𝑠) is difficult due to the large 

number of possible models and computational and conceptual challenges related to 𝑤𝑘 , and so defensible approximation 

methods are required (Hoeting, 1999). In the arena of dynamical systems modeling (i.e. Raftery et al, 2005; Duan et al, 2006), 

this problem has typically been solved iteratively as an expectation-maximization problem that simultaneously maximizes the 235 

likelihood of both 𝑝(△ |𝑀𝑘, 𝑌𝑜𝑏𝑠) and 𝑤𝑘, though other approaches have been employed in other domains (i.e. Ker and Liu, 

2020). 

Generalized Likelihood Uncertainty Estimation (GLUE) is an approach to uncertainty estimation with wide use in 

hydrology (Beven and Binley, 2014). GLUE recognizes that discrepancies between observed and model-simulated data often 

exhibit non-random patterns, reflecting the presence of heteroscedasticity and autocorrelation resulting from errors in model 240 

structure, inputs, and data (Beven, 2012). To account for these uncertainties, GLUE allows the modeler to assign a "measure 

of belief" to each simulation result, reflecting their confidence in its validity. This measure of belief, or likelihood function, 

may not be formal in the statistical sense but serves to express the modeler’s subjective judgement (Beven, 2012). The selection 

of an appropriate likelihood is crucial, often relying on performance metrics such as Nash Efficiency (NSE), but its choice 

depends on the study objective (Smith et al., 2008). Likelihoods are used to develop acceptability limits and weight a set of 245 

acceptable models and approximate the uncertainty associated with the inference of parameters or other model-derived 

quantities. By considering multiple plausible model structures and developing a clear metric by which models are evaluated, 

GLUE provides a holistic and flexible framework for parameter estimation in the presence of uncertainty about the appropriate 

model structure and other epistemic uncertainties (Beven, 2012).  

The current analysis adopts a strategy that combines SBI with informal likelihood weighting to address model 250 

misspecification. This approach involves generating weighted averages of estimated parameter distributions from multi-model 

ensembles using a form of Bayesian Model Averaging (BMA) (Eqn. 3). Specifically, we take the weighted average of the 

conditional estimates for p(θ|Y) (Eqn. 2) obtained through SBI for a set of rainfall-runoff simulators M1,…, Mk, so that a range 
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of models and parameter combinations are considered. As in GLUE, the weights are derived from a selected performance 

metric, reflecting the suitability of predictions given observed data; where performance is below a pre-defined limit of 255 

acceptability, the model is not considered in the weighting process. The claim is that this method of model combination 

mitigates over-confident inference due to model structural inadequacy without diluting the valuable information in the 

parameter estimates made by SBI. The broader implication is an approach to extend the usage of SBI to situations where we 

are uncertain about the appropriate model structure. We believe that being able to extend SBI in this way could, broadly 

speaking, be part of a strategy to build more comprehensive understanding of the inherent uncertainties associated with 260 

hydrological modeling approaches. Experiment 4 evaluates whether BMA produces more accurate parameter estimates and 

realistic parameter spreads compared to standalone SBI. For detailed implementation specifics, refer to Section 3.8.  

3 Materials and Methods 

This section describes our implementation of surrogate-derived SBI, and four experiments undertaken to test it. We 

first introduce those experiments, and the goals associated with them (Sect. 3.1). Then, we describe the domain of interest, the 265 

Taylor River watershed (Sect. 3.2). The rest of the methods subsections describe the components, implementation, and 

validation of SBI, as outlined in Table 1.  

 

Table 1.  Outline of the components described in the methods section. 

Section Name Description 

3.1 Experiments  

3.2 Taylor River Basin Domain of study 

3.3 ParFlow Process-Based simulator 

3.4 Long-Short Term Memory (LSTM) Network Surrogate simulator 

3.5 Simulation-Based Inference (SBI) Method for parameter inference  

3.6 Conditional Density Estimator, qϕ(θ|Y) Learns distribution of parameters 

3.7 Posterior Predictive Check 

 

From inferred parameters, make prediction 

3.8 Calculation of Model Weights  Method for model combination  
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3.9 Evaluation Metrics Assess performance of SBI 

 270 
 

Figure 1 shows how the components of surrogate-derived SBI interrelate. In Fig. 1A, a small set of process-based 

simulations are generated by ParFlow. A LSTM neural network learns from these simulations to mimic the behavior of 

ParFlow, interpolating the relationship between climate forcings, watershed parameters M and K and output streamflow time 

series. The LSTM can be used as a ParFlow surrogate to quickly explore the streamflow response to different parameter 275 

configurations and forcing scenarios.  

We leverage the efficiency of the surrogate to conduct SBI on parameters, as depicted by Fig. 1B. Our goal with SBI 

is to estimate probable values for the watershed parameters M and K given the occurrence of a particular streamflow 

observation. To that end, we randomly sample many (n=5000) parameter configurations from a prior distribution p(θ) and 

from the LSTM simulate an equivalent number of streamflow timeseries Y. This set of simulated parameter-data pairs is used 280 

to train a neural density estimator qϕ(θ|Y), which is a deep-learned model of the full conditional density of parameters given 

data p(θ|Y). Once trained, the neural density estimator is evaluated with a given observation to produce a distribution of 

parameters, the posterior distribution p(θ | Y = YObs), which represent our ‘best guess’ of what the parameters should be.  

Finally, a predictive check (Fig. 1C) ensures that the parameter estimates generate a calibrated model. The simplest 

version of this check is to put the estimates of parameters from the previous step back into the LSTM, which generates a new 285 

ensemble of streamflow simulations. The simulations should resemble the observation closely if the simulator captures the 

behavior of the dynamical system well, and parameter inference was done correctly. Optionally, the parameter estimates may 

be weighted using a performance evaluation of the predictive check.  

 

 290 
Figure 1. An illustration of surrogate-derived simulation-based inference (SBI). In subplot (a), a Long Short-Term Memory (LSTM) 

neural network learns watershed behavior from ParFlow, a process-based simulator. The implementation of SBI is shown in subplot 

(b), where the objective is to estimate watershed parameters θ given an observation Yobs. This parameter estimate is formally known 

as the posterior parameter distribution p(θ | Y = YObs). We randomly sample many parameter configurations from a prior 

distribution p(θ) and from the LSTM simulate an equivalent number of streamflow timeseries Y. This set of simulated parameter-295 
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data pairs is used to train a neural density estimator qϕ(θ|Y). Subplot (c) shows the posterior predictive check, which involves using 

the parameter estimate to (ideally) generate a calibrated model.  

3.1 Experiments 

We explore the performance of SBI in four experiments. These experiments test the ability of SBI to accurately and 

precisely estimate parameters for simulator calibration. The subject of interest in these experiments is the potential mismatch 300 

between observations and the simulator. To test this, we vary the degree of uncertainty associated with how observations relate 

to the simulator and strategies to address this mismatch. Synthetic observations with known parameters are used to conduct 

the experiments because they are easier to benchmark. These experiments are further described below and in Table 2, and the 

results are explored in Sect. 4: 

1. ‘Best Case’: Find p(θ | Y = YObs_LSTM). We use as observation the streamflow generated by a surrogate simulator (e.g., 305 

with a given combination of parameters) and use SBI to infer the parameters. Because we are treating the simulator 

as observations in this case (i.e. we assume the simulator can by definition generate data identical to the observation), 

no uncertainty exists about the structural adequacy of the model represented by the surrogate simulator. This 

experiment serves as a baseline check for our SBI workflow. 

2. ‘Tough Case’: Find p(θ | Y = YObs_ParFlow). We use a ParFlow simulation as observation and use SBI to infer the values 310 

of the parameters. As there is a slight mismatch between observed (in this case ParFlow simulation) and simulated 

data (i.e. the surrogate simulator), there is some uncertainty about the structural adequacy of the model represented 

by the surrogate simulator. This experiment tests whether the proposed framework, where SBI is carried out with the 

surrogate simulator, can be successful given misspecification of the surrogate. 

3. ‘Boosted Case’: Find more accurate p(θ | Y = YObs_ParFlow). Building from the ‘Tough Case’, we again use a ParFlow 315 

simulation as observation but instead use an ensemble (‘boosted’) surrogate simulator to infer the known parameters. 

Unlike in the ‘Tough Case’, multiple forms of the surrogate simulator are considered to represent uncertainty about 

the appropriate model structure. In this case we’re testing whether the proposed framework can be made more robust 

to surrogate misspecification if multiple surrogate structures are combined.  

4. ‘Weighted Case’: Find Bayesian Model Averaged p(θ | Y = YObs_ParFlow, w). Building from the ‘Boosted Case’, we 320 

add a performance measure (e.g. informal likelihood) to emphasize (‘weight’) credible and reject implausible forms 

of the surrogate simulator that have been identified by SBI. Unlike in the ‘Boosted Case’, uncertainty about the 

adequacy of surrogate simulator structures and configurations is explicitly evaluated using the likelihood weighting. 

This experiment tests whether the proposed framework is more robust to surrogate misspecification if competing 

surrogate structures are weighted based on the fit between simulated and observed data.   325 

 

Table 2. The four experiments explore how the observation and simulator type affects the quality of parameter inference.  

Experiment # Name Goal 
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1 Best Case Infer parameters given no mismatch between observed and simulated data   

2 Tough Case Infer parameters given some mismatch between observed and simulated data  

3 Boosted Case Infer parameters given some mismatch between observed and multi-model 

simulated data.   

4 Weighted Case Infer parameters given some mismatch between observed and simulated data from 

multiple models weighted on by their goodness of fit. 

 

3.2 Taylor River – The Domain 

The physical area of study is the Taylor River headwater catchment located in the Upper Colorado River Basin (Figure 2). The 330 

Taylor is an important mountain headwater system for flood control and water supply in the Upper Colorado River Basin 

(Leonarduzzi et al., 2022). This catchment is at an elevation of between 2451 and 3958 meters above mean sea level and has 

a surface area of around. 1144 km2. This catchment is snowmelt-dominated in summer. The geographical extent of the 

watershed is defined by the USGS streamflow gage in Almont, Colorado (ID: 09110000) at the basin outlet. Over the full 

period of record (1910 - 2022), the lowest average monthly discharges are recorded in January and February, with values of 335 

approximately 100 [cfs] (3 [cms]), after which there is a steady increase of discharge and generally wetness in the catchment 

up until June, when an average discharge of approximately 900 [cfs] (25 [cms]) is recorded. Synthetic data corresponding to 

the Almont gage (USGS 09110000) location are used for Experiments 1-4, as described in Sect. 3.1. Observed streamflow 

data from water year 1995 are revisited in the discussion and Appendix E.  

 340 
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Figure 2. Map showing the study domain Taylor River catchment near Almont, Colorado.  

 

3.3 The Process-Based Simulations (ParFlow) 

We use the integrated hydrologic model ParFlow-CLM to simulate groundwater and surface water flow in our 345 

domain. ParFlow-CLM is designed to capture dynamically evolving interactions between groundwater, surface water and land 

surface fluxes (Jones and Woodward, 2001; Maxwell and Kollet, 2006; Maxwell et al., 2015a). In the subsurface, variably 

saturated flow is solved using the mixed form of Richards Equation. Overland flow is solved by the kinematic wave 

approximation and Manning’s equation. ParFlow is coupled to the Common Land Model (CLM). CLM is a land surface model 

which handles the surface water-energy balance (Maxwell and Miller, 2005; Kollet and Maxwell, 2008). It is thus well-suited 350 

to examine evolving watershed dynamics at the large scales (e.g., Maxwell et al., 2015b), as in the Taylor River Basin in 

Colorado, USA.  
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The Taylor catchment is represented by ParFlow at 1 kilometer resolution, with five vertical layers of total depth 102 

meters (Leonarduzzi et al., 2022). As with Leonarduzzi et al., 2022, all the required input files - including soil properties, 

landcover, and meteorological forcings - are subset from Upper Colorado River Basin ParFlow-CLM simulations of Tran et 355 

al. 2022. The subsurface contains 23 separate soil and geological units.  

We explore the sensitivity of streamflow to a large ensemble of different configurations of Manning’s roughness 

coefficient (M), and hydraulic conductivity (K). For the baseline configuration of the model, K ranges between 6.16e-03 and 

2.69e-01 [m/h] across the 23 spatial units; M is constant across the domain surface at 2.4e-06 [h/m^(1/3)]. An ensemble of 183 

simulations is generated by systematically varying M and K.  For M since the values are spatially constant it is easy to adjust 360 

this single value. K is spatially variable; therefore, we apply a single scaling factor to all three dimensions (Table A1). To make 

the distinction clear, we call these ‘single’ scalar representations Ks and Ms, respectively. The values Ks and Ms used in this 

study are shown in Table A2. A sensitivity analysis of streamflow to parameter configurations is shown in Fig. A1. 

All simulations are run for a one-year period (8760 hours) using forcings from water year 1995 taken from Tran et 

al., 2020. Surface pressure outputs are converted to runoff using the overland flow utility built into ParFlow. This study focuses 365 

on runoff at the cell closest to USGS gage 09110000. We convert to cubic feet per second (cfs) for direct comparison to gaged 

data and rescale from 0 to 1. Streamflow simulations from ParFlow are relatively more sensitive to changes in K than M, as 

shown in Fig. A1. The purpose of generating this ParFlow ensemble is not to create the most diverse set of system realizations 

but provide a foundation from which to train the surrogate model and test performance of the simulation-based inference 

approach.  370 

3.4 The Surrogate Simulator (LSTM) 

We employ a Long Short-Term Memory (LSTM) network to learn from our process-based simulator ParFlow. LSTM 

networks are neural networks that are designed to learn temporal relationships (Rumelhart et al., 1986; Hochreiter and 

Schmidhuber, 1997). They have had some use for prediction in hydrology (Kratzert et al., 2018) to learn how sequences of 

previous meteorological forcing data affect streamflow at the basin outflow. In our study, an LSTM network learns the response 375 

of streamflow at gaged location 09110000 to forcings and parameters in the Taylor River basin, as defined by the ensemble of 

ParFlow simulations described in Sect. 3.3.  

Throughout our experiments, we use an LSTM with 10 input features containing forcings X and parameters θ, and 

one output class containing streamflow Y. As in Kratzert et al. 2018, we employ a ‘look-back’ approach. For each sample, the 

LSTM ingests a sequence length of ‘l’=14 days of previous forcings weighted by scalar representations of ParFlow parameters 380 

(Ks, Ms) and returns streamflow the next day. More explicitly:  

 𝑌𝑡+1 =  𝐿𝑆𝑇𝑀(𝑋𝑡→(𝑡−1), 𝐾𝑠 , 𝑀𝑠)          (4) 

where Yt+1 is the streamflow the next day, l is the ‘look back’ which controls the length of the input sequence used for 

prediction, 𝑋𝑡→(𝑡−1) are vectors containing sequences of forcing data from today (i.e., day t) back to day t minus l for each of 

the 8 forcing variables. Ks and Ms are scalar representations of the ParFlow parameters hydraulic conductivity (K) and 385 
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Manning’s roughness (M). Since these values do not vary over time each is ingested as a vector repeated ‘l’ times by the 

LSTM. 

The relevant hyperparameters used to fit the LSTM surrogate are further defined in Table A1 and B1. Fig. B1A shows 

the distribution of train-validation and test sets across parameter space and the performance of the LSTM relative to ParFlow 

on a streamflow time series generated by a randomly selected test parameter set, θA. θA is used throughout the results section 390 

for benchmarking. The LSTM captures the general streamflow behavior quite well, but not quite perfectly (Figure B1B). We 

emphasize that the goal here is to produce a surrogate simulator adequate for the simulation-based inference of parameters Ks 

and Ms.   

3.5 Implementation of Simulation-Based Inference 

The goal of SBI is to infer appropriate values flexibly and efficiently for simulator parameters, given a particular 395 

observation. SBI is illustrated in Fig. 1B. Take θ to be a vector of parameters that control a simulator, and let Y be a vector of 

simulated data. The simulator implicitly defines a conditional probability p(Y|θ), which may very well be analytically 

intractable. p(θ) encodes our prior beliefs about parameters. We are interested in inferring the parameters θ given an 

observation YObs, i.e., we would like to know the posterior probability density p(θ|Y=YObs ), after Papamakarios and Murray 

(2016): 400 

 

𝑝(𝜃|𝑌 = 𝑌𝑂𝑏𝑠)  ∝  𝑝(𝑌 = 𝑌𝑂𝑏𝑠| 𝜃) 𝑝(𝜃)            (5) 

 

where θ contains Ks and Ms, and YObs is an ‘observed’ streamflow timeseries. Y is a set of simulated outputs that are formally 

equivalent but not identical to the observation YObs. Here, parameter-data pairs are simulated by a surrogate (Sect. 3.4) of 405 

ParFlow. Simulations are drawn from the same forcing scenario to limit the degrees of freedom of parameter inference.  

A conditional density estimator qϕ(θ|Y) learns the posterior density directly from simulations generated by the 

surrogate. qϕ is a learnable model - often a neural network - that fits to p(θ | Y) and can be evaluated to approximate p(θ | Y = 

YObs). (See section 3.6 for details about qϕ ).  The procedure can be summarized as follows, after Papamakarios and Murray, 

(2016):  410 

1. Propose a prior set of parameter vectors {θ}, sampled from p(θ).  

2. For each θ,  run the simulator to obtain the corresponding data vector, Y. 

3. Train the neural density estimator qϕ(θ|Y) on the simulated set from {θ, Y}. 

4. Evaluate qϕ at observed data vector YObs to generate a posterior set of parameter vectors {θ} proportional to p(θ | Y = 

YObs). 415 

The SBI workflow and architectures used in this study are derived from a python toolbox for simulation-based inference 

(Tejero-Cantero et al., 2020). We direct the reader to Papamakarios and Murray (2016) for a detailed description of the 

structure, training, and evaluation of a neural conditional density estimator for simulation-based inference. Others (Lueckmann 
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et al. 2017; Greenberg, Nonnenmacher, and Macke 2019) have built on this idea to introduce MCMC-like approaches to 

sequential learning of the posterior at observations to make inference more efficient. We employ a sequential learning 420 

procedure in our workflow, as described in Appendix C.2. The hyperparameters and architectures used in SBI are shown in 

Table C1.  

3.6 Neural Conditional Density Estimators for SBI  

The conditional density estimator qϕ(θ|Y) is an essential ingredient of SBI. The neural conditional density estimator 

differs from conventional neural networks (such as the LSTM) in two important ways. First,  it learns a conditional probability 425 

distribution, as opposed to a function. Second, it represents the ‘inverse’ model – the probability of parameters given data p(θ 

| Y) – as opposed to the dependency of data on parameters, which is encoded in ‘forward’ simulators like ParFlow and its 

surrogate, the LSTM. Once trained, the neural conditional density estimator is evaluated with an observation to infer a 

distribution of plausible parameters, the posterior distribution p(θ | Y = YObs) (Fig. 1B). 

Conditional density estimators create a model for “a flexible family of conditional densities”, parameterized by a 430 

vector of parameters (ϕ) (Papamakarios and Murray, 2016). Density estimator parameters are not to be confused with the 

simulator parameters, θ. The latter are the target of inference while the former parameterize the density-estimated posterior 

probability and must be learned or derived to conduct inference of simulation parameters. Deep neural networks provide new 

opportunities to learn ϕ for complex classes of densities, which gives rise to the term neural conditional density estimator. 

Mixture Density Networks (MDNs) are an intuitive class of conditional density estimators capable of modeling any 435 

arbitrary conditional density (Bishop, 1994). They take the form of a mixture of k (not hydraulic conductivity, K) Gaussian 

components, as below.  

 

𝑞𝜙(𝜃|𝑌) = ∑ 𝛼𝑘𝒩(𝜃|𝑚𝑘𝑘 , 𝑆𝑘)           (6) 

 440 

where the mixing coefficients (α), means (m), and covariance matrices (S) comprise the neural density parameterization, ϕ. 

They can be computed by a feedforward neural network.  

Training an MDN is a maximum likelihood optimization problem (Bishop, 1994). Given a training set of N simulation 

parameters and data pairs, {θ, Y}, the objective is to maximize the average log probability (or minimize the negative log 

probability) with respect to the parameters, ϕ. 445 

 

argmax𝜙
1

N
∑ log 𝑞𝜙(𝜃𝑛|𝑌𝑛)𝑛            (7) 
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For a fuller description of the parameterization and training of neural density estimators, see the supplementary 

material in Papamakarios and Murray (2016) or the original write-up in Bishop (1994). This study uses a specialization of this 450 

family of neural networks called a Masked Autoencoder for Density Estimation, further described in Appendix C.1.  

3.7 Posterior Predictive Check 

A crucial diagnostic step in the SBI workflow is to check the ability of the simulator to characterize process(es) of 

interest after inference has been conducted (Cranmer et al., 2020). To be more explicit, this step checks that parameters from 

the inferred posterior p(θ | Y = YObs) can simulate streamflow data (Y) consistent with the observation (YObs) when plugged 455 

back into the simulator.  The simulated data should ‘look similar’ to the observation (Tejero-Cantero et al., 2020). Gabry et al. 

(2019) describe this type of model evaluation as a ‘posterior predictive check’. This predictive check is represented by the Fig. 

1C.  

Here, we conduct posterior predictive checks by drawing a small number of parameter sets from our inferred 

parameter posterior density. In our workflow, the inferred posterior parameter density is represented by an array containing 460 

thousands (n=5000) of plausible parameter sets. The frequency of their occurrence is 'probability weighted', in the sense that 

there are very few occurrences of parameter sets in the 'tails' and many occurrences close to the mean, and improbable 

parameter sets do not exist at all. For our posterior predictive check, we randomly sample (n=50) parameter sets from this 

frequency-weighted parameter posterior array. We use these parameter samples to generate an ensemble of ‘predicted’ 

streamflow time series using the LSTM. 465 

3.8 Calculation of Model Weights 

Bayesian Model Averaging (BMA) is a method of combining different model forms to reduce the risk of overfitting 

on prediction or inference (Madigan and Raftery, 1994). The implementation explored here uses an informal likelihood 

measure to assign unique probabilities, or weight, to models (both model structures and parameters) inferred by simulation-

based inference. Specifically, the sets of parameters estimated by SBI are resampled using weights based on the fit of observed 470 

and simulated streamflow to estimate a new probability density. Given a set of K model structures, M1, Mk,…, MK, this weighted 

estimated density, 𝑝(𝜃|𝑌𝑂𝑏𝑠,  𝑤𝑘), is:  

 

𝑝(𝜃|𝑌𝑂𝑏𝑠 ,  𝑤𝑘) = ∑ 𝑝(𝜃|𝑀𝑘 , 𝑌𝑜𝑏𝑠)𝐾
𝑘=1 𝑤𝑘         (8)  

 475 

where 𝑝(𝜃|𝑀𝑘 , 𝑌𝑜𝑏𝑠) is equivalent to the posterior parameter density, 𝑝(𝜃|𝑌 = 𝑌𝑂𝑏𝑠), from SBI (eq. 5); and 𝑤𝑘  is the 

model probability or weight, which is based on the goodness of fit of simulated data from the posterior predictive check. All 

probabilities are implicitly conditional on the set of all models being considered. 
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In the current application, weights are calculated using the informal likelihood 𝐿𝑖𝑘, a measure of acceptability for 480 

each simulation result based on its error relative to observed data. Model configurations with likelihood measures below a pre-

defined limit of acceptability are rejected; the set of remaining models are assumed to be equally probable prior to weighting. 

Weights for each individual model configuration in the set K structures, each composed of a set of I parameter configurations, 

is equal to:  

 485 

 𝑤𝑘 =
𝐿𝑖𝑘

∑ ∑ 𝐿𝑖𝑘
𝐼
𝑖=1

𝐾
𝑘=1

          (9) 

 

The informed reader will recognize disagreement and inconsistent usage in the literature about the likelihood function 

(Beven, 2012; Nearing et al, 2015). We acknowledge legitimacy in all camps, but here adopt a subjective, or informal, 

likelihood as sometimes used in Generalized Likelihood Uncertainty Estimation (GLUE). We choose to use the Kling Gupta 490 

Efficiency (KGE; Gupta et al., 2009) as the likelihood metric for its utility and history rainfall-runoff model assessment. 

Furthermore, we note that the method is not dependent on a specific metric and others could apply this approach using a 

different metric if they choose.   The KGE metric is computed using the following equation: 

 

 𝐾𝐺𝐸 = 1 − √(1 − 𝛼)2 + (1 − 𝛽)2 + (1 − 𝜌)2       (10) 495 

 

Where α is the ratio of the standard deviation of simulated and observed streamflow data, respectively; β is the ratio 

of their means; and ρ is the correlation coefficient in time.  

The weighted probability density 𝑝(𝜃|𝑌𝑂𝑏𝑠 ,  𝑤𝑘) is estimated using an algorithm that can broadly be explained as 

sampling from a distribution, where the distribution represents the weights of each distinct parameter configuration i under 500 

each model structure k. Model indices are sampled by mapping a random target probability between 0 and 1 to the cumulative 

distribution of model weights. This approach can be used to sample sets of parameters from the SBI-inferred posterior 

parameter density weighted to high-likelihood model configurations identified by the posterior predictive check. 

3.9 Evaluation Metrics 

The performance of simulation-based inference is evaluated in terms of accuracy and precision. First, we evaluate 505 

performance with respect to the parameter posterior (the inferred parameters); and second with respect to the posterior 

predictive check (the ability to generate realistic data using the inferred parameters).  

3.9.1 Evaluating the Posterior Parameter Density 

Accuracy of parameter inference is evaluated using the Mahalanobis distance, DM(θTrue). Mahalanobis distance 

measures the distance between a point and a distribution of values after Maesschalck et al. (2000), such that: 510 
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𝐷𝑀(𝜃𝑇𝑟𝑢𝑒) = √(𝜃𝑇𝑟𝑢𝑒 − 𝜃𝜇)
𝑇

𝛴−1(𝜃𝑇𝑟𝑢𝑒 − 𝜃𝜇)             (11) 

 

where θTrue is the set of observed or ‘true’ parameters; θμ is the mean of the posterior distribution p(θ | Y = YObs); and Σ is the 

covariance matrix of p(θ | Y = YObs). In essence, Mahalanobis distance measures how far off our parameter estimate is from 

the ‘truth’. For this study values less than two are defined as acceptable (within ~two standard deviations); this threshold was 515 

identified via trial and error. 

Precision of parameter inference is evaluated in terms of the determinant of the covariance matrix of the inferred 

parameter posterior, |Σ|. The determinant can be interpreted geometrically as the ‘volume’ contained by the covariance matrix, 

and by extension the inferred parameter posterior distribution. Larger determinant values are less precise; smaller values more 

precise (4.3 Determinants and Volumes). In this study we define values less than 10-6 as acceptable, identified via trial and 520 

error. 

3.9.2 Evaluating the Posterior Predictive Check 

We evaluate the ability of the simulated ensemble of streamflow to adequately characterize the observed streamflow 

using the root mean squared error (RMSE) between each (n=50) simulated streamflow time series (Y) and the observed 

streamflow time series (YObs). RMSE is calculated for each predication as the square root of the mean squared error, such that: 525 

 

𝑅𝑀𝑆𝐸(𝑌) = √∑ (𝑌𝑡−𝑌𝑂𝑏𝑠𝑡)
2𝑇

𝑡=1

𝑇
            (12) 

 

where 𝑌𝑝𝑟𝑒𝑑 𝑡
is the simulator-predicted streamflow at time t, taken from 𝑌𝑝𝑟𝑒𝑑; 𝑌𝑂𝑏𝑠𝑡

 is the observed or true streamflow at time 

t, taken from 𝑌𝑂𝑏𝑠; T is the number of times (days) in the streamflow time series. 530 

Accuracy of the simulator characterization of streamflow is the mean of the RMSE calculated for all n=50 Y relative 

to YObs (RMSEAve). Precision of the simulator characterization of streamflow is assessed as the standard deviation of the RMSE 

calculated for all n=50 Ypred relative to YObs  (RMSEstd). For both the mean and variance RMSE values less than 0.01 [scaled 

streamflow units], identified via trial and error, are acceptable.      

4 Results 535 

Here we present the outcomes of the three experiments described in Sect. 3.1. The first two experiments showcase 

inference problems that increase in difficulty from the easy best case (Sect. 4.1) to the hard tough case (Section 4.2). The final 

experiments offer workarounds by way of the boosted case (Sect. 4.3) and weighted case (Sect 4.4). The performance of the 

methods explored in the three experiments is first discussed in terms of one shared benchmark scenario. Then, we show the 

results of the three experiments on a larger shared set (n=18) of benchmark scenarios (Sect. 4.5).  540 
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4.1 Experiment 1 – Best Case 

For the Best Case scenario, we attempt to infer the parameters of synthetic observation(s) taken from the trained 

surrogate simulator, such that p(θ | Y = YObs_LSTM).  We first infer the parameters of just one randomly selected streamflow 

observation, denoted with an ‘A’ (YObs_LSTM_A). The set of ‘benchmark’ parameters (θA) used to generate the underlying 

simulation are approximately 0.60 for Ks, and 0.85 for Ms. θA is also our benchmark in parameter space for Experiments 2 and 545 

3.  

 

 

Figure 3. The parameter posterior estimate for observation YObs_LSTM_A closely matches the true parameter values in the ‘best’ case. 

Subplots (a), (b) and (c) comprise a pair plot of posterior densities across the full possible parameter space; subplot (d) is zoomed in 550 
for detail. The posterior density of MS (a) and KS (b) are shown individually, and together (c). Axes are expressed in both the 

scale/transformed and unscaled units of the parameters. The ‘true’ parameters are denoted by the red line and circle, respectively.  

 

We accurately and precisely estimate parameters for our benchmark case (Figure 3). The pair plot approximates the 

posterior parameter density evaluated by the neural density estimator at the observation. In individual parameter space, 555 

narrower peaks (in blue) correspond with more confident and precise parameter estimates. In shared parameter space (c), zones 

of deep purple are effectively zones of no probability; zones of blue-green-yellow are zones of high probability. The benchmark 

parameters (i.e., the parameters used to generate the simulation) are denoted by the red line and circle, respectively. Accuracy 
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is evaluated by the Mahalanobis Distance, which is 3e-01; thus, the ‘true’ parameter set can be thought of as less than one 

‘standard deviation’ from the central tendency of the inferred distribution. Precision is estimated by taking the determinant of 560 

the covariance matrix.  The determinant of the covariance matrix is 9e-08. This is well below our threshold of 1e-06 for 

sufficiently precise parameter inference.   

 

         

Figure 4. Results of the posterior predictive check on synthetic observation AYobs in Experiment 1 (‘base’ case). Subplots (a) shows 565 
streamflow simulations resulting from inference of p(θ|Y = AYobs). The ensemble of predictions is bounded by blue, and observation 

in red. Blue lines represent time series of upper- and lower- streamflow values in this ensemble, and the red line represents the 

observation YObs_LSTM_A. In subplot (b), we zoom into the area of greatest uncertainty between days 200 and 300, which correspond 

to the spring snow melt-off.     

 570 

Taking this one step further we can use the inferred parameter distributions to generate an ensemble of streamflow 

simulations using the LSTM model and compare this to the observed streamflow (referred to as our posterior predictive check).  

As show in Figure 4a, the inferred parameters generate simulation results that characterize the observed streamflow observation 

reasonably well.  Greater uncertainty exists around higher streamflow values over the course of the water year, as shown by 

the increasing width of the uncertainty envelope after day 200 (Figure 4B). Note that this is the time of year during which 575 
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snow melt-off occurs in the Taylor River Basin. Mean and standard deviation of streamflow error are approximately 6e-03 and 

4e-03 [scaled streamflow units], respectively.  

4.1.1 Inference for many observations 

In addition to conducting this analysis for one observation as described, an advantage of SBI is the low computational 

expense of evaluating new observations. Simulations from the process-based simulations (i.e., ParFlow) are slow and scale 580 

linearly with the number of simulations. It takes ~105 times longer to generate a ParFlow simulation (1680 seconds) than to 

evaluate one observation YObs using a trained neural density estimator (0.045 seconds) on a high performance computer system 

allocation of one CPU node with four gigabytes of working memory. Put another way, after an upfront sunk cost to learn the 

distributions, we can evaluate new observations, YObs, practically for free. Many other techniques to parameter determination 

are not ‘amortized’ in this way (Cranmer et al., 2020). For example, Approximate Bayesian Computation (ABC) requires 585 

restarting most steps in the inference process when new data comes available (Vrugt and Sadegh, 2013). This property of SBI 

can be handy in domains where the system structure (parameters) stays the same, but new observations come available all the 

time - as can be the case in watershed hydrology. In Appendix D, we extend Experiment 1 to evaluate the posterior parameter 

density for many synthetic observations (YObs_LSTM_i). 

4.2 Experiment 2  –  Tough Case 590 

Experiment 2 is our tough case. We attempt to infer the parameters of synthetic observations from ParFlow, such that 

p(θ | Y = YObs_ParFlow). We do this using the same realization of the neural density estimator from Experiment 1 (the best case). 

The ‘tough’ case is a realistic test of the robustness of parameter inference. Specifically, it tests our ability to evaluate data 

from a different source. Unlike in the best case, we must deal with uncertainties related to the goodness of fit between the 

simulator (the LSTM surrogate) and ‘observation’ (the underlying ParFlow model). We generate the posterior parameter and 595 

predictive densities to the benchmark case (θA) explored in Experiment 1. The only difference is that YObs_ParFlow_A is a 

simulation generated by ParFlow, and not the surrogate.  
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Figure 5. Results of parameter inference and posterior predictive check on synthetic observation YObs_ParFlow_A in Experiment 2 600 
(‘tough’ case). Subplots (a) and (b) show overconfident parameter inference that still results in well-constrained posterior predictive 

check.  

 

Figure 5 plots the results of experiment two.  Here we see that the quality of inference is somewhat degraded for the 

tough case compared to the best case. Parameter inference here is overconfident; it is precise but biased as indicated by the 605 

tight probability distributions and the difference between the peak probability and the observation (indicted by the red line in 

Figure 7A). The true parameter value does not plot in the area corresponding to highest probability. The determinant is 6e-08, 

which is within the same order of magnitude as the best case. However, the Mahalanobis Distance is much higher, at 7e0. 

Thus, the ‘true’ parameter set can be thought of heuristically as approximately seven ‘standard deviations’ from the central 
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tendency of the inferred distribution. Visual inspection of Figure 7B shows that streamflow simulations yielded by inferred 610 

parameters still characterize the synthetic streamflow observation well. However, average error is roughly twice as high for 

the tough case compared to the best case (1e-02 compared to 6e-03), which is approximately equal the acceptability criterion 

described in Sect. 3.7.  

Overconfident posterior estimates are a result of the misfit between our LSTM surrogate compared to ParFlow (Figure 

B1B). One interpretation of overconfident parameter inference is that the relationship between data (streamflow) and 615 

parameters (Ms, Ks) in the LSTM surrogate does not quite represent their relationship as it exists in ParFlow. These differences 

are not unexpected, because ParFlow has parameters that vary across a three-dimensional domain but are lumped together in 

the LSTM (See also Appendix A). This bias in the surrogate simulator increases the possibility of overconfidence in the 

conditional density learned by the neural density estimator. We consider this suboptimal performance in parameter inference 

a consequence of ‘surrogate misspecification’, as described further in Sect. 6.  620 

4.3 Experiment 3 – Boosted Case 

A desirable approach to circumventing overconfident parameter posteriors is to make the LSTM surrogate simulator 

less biased. In our study, we utilize an ensemble of surrogate LSTM simulators with distinct bias stemming from surrogate 

misspecification subject to the initialization and selection of training data. That ensemble is then used to generate the set of 

simulated pairs {θ, Y} to train a new neural density estimator. The underlying principle is that the overall behavior of an 625 

ensemble of surrogate simulators in aggregate may not be biased, even if each individual simulator has its own bias.  

Experiment 3 is our boosted case. As in Experiment 2, we attempt to infer the parameters of synthetic observation(s) 

reserved from ParFlow, p(θ | Y = YObs_ParFlow). As opposed to Experiments 1-2, we learn the conditional probability from an 

ensemble of 10 surrogate LSTM simulators instead of just one. We refer to the LSTM ensemble as a ‘boosted’ surrogate. 

Compared to the LSTM used in Experiment 1 and 2, these LSTMs are trained for fewer epochs (100, as compared to 300) and 630 

on a smaller random split of the data (0.7, as compared to 0.6). The reserved test data is the same across the LSTMs for 

Experiments 1, 2, and 3. Note that we don’t use an adaptive learning algorithm such as AdaBoost (Freund and Schapire, 1997), 

and instead we equally weight each ‘weak’ LSTM simulator. The neural conditional density estimator is trained by taking a 

random draw from the ensemble of LSTMs and using the selected LSTM to generate a forward simulation of streamflow from 

a randomized parameter combination. Thousands of such draws are repeated until the conditional density has been sufficiently 635 

learned (see Appendix B for details), at which point it can be utilized for parameter inference.  
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Figure 6. Results of parameter inference and posterior predictive check on synthetic observation YObs_ParFlow_A in Experiment 3 

(‘boosted’ case). Subplots (a) and (b) show accurate parameter inference that is somewhat less precise, resulting in a wider but still 

well-constrained posterior predictive check.  640 
 

Results of the boosted case in Experiment 3 show that we may be able to work around the issue of overconfident 

posteriors encountered in the tough case in Experiment 2. Fig. 6A shows precise and accurate parameter inference for our 

benchmark case in Experiment 3. The benchmark parameter values are in the area identified by the highest probability, as 

opposed to in Experiment 2. We note that the area of highest density is somewhat larger than in Experiment 2. The determinant 645 

is 5e-07, which is about an order of magnitude higher than the tough case, 6e-08. The Mahalanobis Distance is 1e0. For 

comparison, Mahalanobis Distance in the previous ‘overconfident’ experiment was 7e0. The inferred parameters generate 
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streamflow simulations that characterize the synthetic streamflow observation well, as shown by the posterior predictive check 

(Fig. 6B). We note that compared to Experiment 2 (Figure 5B) our simulations are somewhat more variable, as shown by the 

larger distance between the larger uncertainty envelope. The average streamflow error is about twice as high for the boosted 650 

case as compared to the tough case, (2e-02 compared to 1e-02). The standard deviation if the error is also greater (5e-03 

compared to 2e-03). The sacrifice in precision with respect to both parameter inference and the posterior prediction is a 

consequence of using an ensemble of surrogates to simulate each parameter set.  

4.4 Experiment 4 – Weighted Case 

In the preceding Experiments, we aimed to rectify overconfident parameter estimates arising from SBI due to 655 

surrogate misspecification. Adding an informal likelihood measure to the inferential paradigm may help to address the issue 

of overconfident parameter estimates by decreasing the importance of low-credibility models. We extend the surrogate LSTM 

simulators from Experiment 3, each with distinct misspecification relative to ParFlow, to train a set of competing neural density 

estimators. Once evaluated with observed data, a metric of simulation quality representing the modeler’s belief in the results 

of inference is used to re-weight the inferred parameter sets drawn from each of the density estimators. The added metric, the 660 

informal likelihood, emphasizes credible model structures and configurations, and safeguards against those that deviate 

significantly from observations.  

Experiment 4 demonstrates our weighted case. As in Experiments 2-3, we attempt to infer the parameters of synthetic 

observation(s) reserved from ParFlow, p(θ | Y = YObs_ParFlow). As opposed to Experiments 1-3, we use the Kling Gupta 

Efficiency (KGE) of the simulations resulting from the posterior predictive check as an informal likelihood measure to weight 665 

the importance of the inferred parameters. Model configurations scoring less than persistence (defined by setting next week’s 

predicted data equal to today’s observed data) are considered not credible and assigned a weight of zero. The weights, w, are 

used to condition sampling from p(θ | Y = YObs_ParFlow). Weighted sampling yields a new set of inferred parameters p(θ | Y = 

YObs_ParFlow, w). We term this quantity the weighted posterior parameter density, an output of the methodology described in 

Section 3.8. 670 

Table 3 characterizes the parameter estimates from the ensemble of competing surrogate models and density 

estimators for the benchmark scenario, YObs_ParFlow and θA. Individual ensemble members are separate rows, with the resultant 

weighted model last. Some surrogate models contain simulator configurations that are more credible than others, where 

credibility is represented by the average KGE of simulated data taken from the posterior predictive check for each surrogate. 

The average KGE (second column) for most members clusters above 0.90, and for members 7 and 9 is near a perfect match of 675 

1.00. On the other hand, members 3 and 6 have surrogate simulator configurations below 0.80. The weighted KGE of 0.94 

(Table 3, second column) indicates that the performance of the weighted model most resembles the most-credible simulator 

configurations, but also incorporates information from less-credible ensemble members.  

 

 680 
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Table 3. Calculation of the weighted model from surrogate models for baseline synthetic observation YObs_ParFlow_A. 

Model1 KGE2 
Cumulative 

Weight (%)3 

Rejections 

(%)4 
DM

5 |Σ|5 

9 0.97 13.5% < 0.200 % 3.8 2.90E-07 

7 0.97 13.4% < 0.200 % 0.3 7.20E-08 

5 0.96 13.3% < 0.200 % 2.3 1.40E-07 

4 0.96 13.2% < 0.200 % 5.4 1.20E-07 

8 0.95 13.1% < 0.200 % 4.6 1.20E-07 

2 0.90 12.4% < 0.200 % 3.8 1.30E-07 

0 0.86 11.7% 2.20% 1.7 1.20E-07 

1 0.85 9.34% 23.0% 7.0 7.50E-07 

3 0.78 0.045% 99.6% 4.5 1.70E-07 

6 0.77 < .00100% 100.0% 6.6 1.80E-07 

Weighted6 0.94 -- -- 1.1 3.00E-06 

1. Members of the ensemble of surrogate models, and their associated neural density estimators (n=9). 

2. Average Kling Gupta Efficiency (KGE) calculated from unweighted posterior predictions. 

3. Each posterior predictive simulation is weighted by the associated KGE; simulation weights are zero where poorer than persistence (KGE<0.81). The 
value in this column is the sum of the individual weights of 5000 predictive simulations taken for each surrogate model. 685 

4. Count of rejected (zero weight) simulator configurations divided by the total number of configurations for each model ensemble member. 

5. Mahalanobis Distance, DM, and determinant, |Σ|, calculated by comparing are θ, Ms = 0.85 and θA Ks = 0.60 to the unweighted parameter posterior p(θ | 
Y = YObs_ParFlow_A) for each surrogate model  

6. The weighted posterior parameter density p(θ | Y = YObs_ParFlow, w), derived by resampling the posterior densities using individual weights. 

 690 

The ensemble members with many credible configurations have a higher weight, or importance, in the weighted 

model. The weights, which are calculated from the sum of KGEs of the simulator configurations, are presented in the third 

column as the cumulative weights. Because predictive checks from members 8, 4, 5, 7, and 9 contain an equivalent number of 

credible simulator configurations, they are nearly equally weighted. Less importance assigned to some members in the 

weighted model is derived from lower likelihoods and rejection (fourth column) where KGE is less than the limit of 695 

acceptability (i.e. <0.81). Surrogates 1, 3, and 6 have many rejected configurations, which are assigned a weight of zero.  

The weighted model is considered more accurate than all but one of the ensemble members. The relative accuracy of 

parameter estimates is presented in the fifth column as the Mahalanobis Distance, DM, of the posterior parameter density for 

each surrogate. This increase in accuracy reflects in part that higher-weighted members are associated with more-accurate 

parameter estimates compared to those that are lower-weighted. Note that the weighted parameter estimate is also less precise 700 

compared to that of the individual surrogates, as represented by the determinant |Σ| in column six.  
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Figure 7. Results of parameter inference and posterior predictive check on synthetic observation in Experiment 4 (‘weighted' case). 

Subplot (a) shows accurate parameter inference that is somewhat less precise and discontinuous, focused on model structures and 705 
parameter combinations that are defined by a higher likelihood. The result is a narrow, well-constrained posterior predictive check 

in (b).  

 

Results of the weighted case in Experiment 4 demonstrate that it is a viable approach to the issue of overconfident 

posteriors encountered in the tough case in Experiment 2. Fig. 7A shows accurate parameter inference for our benchmark case 710 

in Experiment 4. As in Experiment 3, the benchmark parameter values are in the area identified by the highest probability. The 

Mahalanobis Distance, 1.1, is like that of Experiment 3. The geometry of the area of the highest density differs from 

Experiment 3, covering a larger area due to differences in the unweighted parameter estimates associated with each surrogate. 

As a result, the parameter estimate is less precise: the determinant |Σ| is 3e-06, which is about an order of magnitude higher 

than the boosted case, 5e-07. The inferred parameters generate streamflow simulations that characterize the synthetic 715 
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streamflow observation well, as shown by the posterior predictive check (Fig. 7B). We note that compared to Experiment 3 

(Figure 6B) our simulations are about as variable. The average streamflow error is similar for the boosted case as compared to 

the weighted case (2e-02). The standard deviation of the error is also very similar (5e-03 compared to 6e-03).  

4.5 Summary of Experiments 1-4 

Previously, we compared the performance of simulation-based inference in Experiments 1 (best case), 2 (tough case), 720 

3 (boosted case), and 4 (weighted case) on only one benchmark parameter set. In this section, we expand the comparison of 

SBI across the experiments to a larger number (n=18) of parameter sets and corresponding observations. In the case of 

Experiments 1 and 2, the same neural density estimator was utilized to conduct inference. For Experiment 3, an ensemble 

approach was used to create one new neural density estimator; for Experiment 4, likelihood-weighted parameter estimates 

from an ensemble of neural density estimators was used. In the case of Experiments 2- 4, the mock data are the same benchmark 725 

streamflow simulations from ParFlow; for Experiment 1, the observations are taken from the surrogate. All four experiments 

utilize mock data corresponding to the same test parameter sets, to make an apples-to-apples comparison. For reference, those 

test parameter sets are plotted relative to parameter space in the Fig. B1A. The results of the analysis of multiple (n=18) 

parameter sets are shown by the box plots in Fig. 8.  

4.5.1 The precision and accuracy of parameter inference 730 

In general, the parameter estimates from the four experiments are accurate and precise, as shown in Fig. 8A and 8B. 

The best case (Experiment 1) tends to be both precise and accurate. Compared to Experiment 1, the tough case (Experiment 

2) tends to be just as precise but less accurate, while the boosted case. This is to be expected as we made the problem harder 

for Experiments 2-4 by not assuming a perfect surrogate.  Experiment 3 tends to be less precise but more accurate than 

Experiment 2. Compared to Experiment 3, the weighted case (Experiment 4) tends to be yet less precise and more accurate. A 735 

couple of second-order discussion points arise from Figs. 8A and 8B.   

The resulting box plots of the determinant, a metric for the precision of inference, are shown in Fig. 8B. Here we see 

that the training of the conditional density estimator – and not the source of the observations – seems to define the precision 

of inference. The box plots show parameter inference is more precise (i.e., the determinant smaller) for Experiments 1 and 2, 

compared to Experiments 3 and 4. Experiments 1 and 2 use synthetic observations from different sources (the LSTM surrogate 740 

and ParFlow, respectively), however they are both evaluated using the same neural conditional density estimator; note the 

similar behavior of the determinant in the first two experiments. On the other hand, the determinant behaves quite differently 

in Experiment 2 compared to Experiments 3 and 4; all three experiments use synthetic observations from ParFlow, but use 

different configurations of the neural conditional density estimator. In the case of Experiment 3 (the boosted case), differences 

within an ensemble of LSTM surrogates are lumped into the training of one neural density estimator; in the case of Experiment 745 

4 (the weighted case), those differences are incorporated in the training of separate neural density estimators. Results show 

that Experiment 3 is associated with greater precision in parameter inference (i.e. smaller determinant) compared to Experient 
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4, as shown by the expanded volume of the parameter estimates in Figs. 7A compared to 6A. The lumping approach in the 

boosted case may smooth differences between the surrogates, de-emphasizing parameter combinations in the tails of the 

separated posterior densities used in the weighted case. The likelihood-weighting and limits of acceptability also influence the 750 

distribution of the parameter estimate, but not in a manner that significantly decreases its precision. More fundamentally, the 

precision of parameter inference for those methods seems to reflect the simulator(s) (i.e., the variety in simulated responses, 

Y, to parameter configurations, θ), and not contain much, if any, information about the goodness-of-fit between observations, 

Yobs. and simulated data, Y.3 

Box plots of the Mahalanobis4 distance, a metric of the accuracy of inference, are shown in Fig. 8A. The box plots 755 

show that parameter inference in Experiments 2 and 3 degrade in accuracy compared to Experiment 1, while parameter 

inference from Experiment 4 is nearly as accurate. The box plots also demonstrate that parameter inference is in general more 

accurate for the boosted case (Experiment 3) compared to the tough case (Experiment 2). However, the Mahalanobis distance 

is greater at some outlier points in the boosted case (Figure 7B). What this means is that while the boosted case yields more 

accurate inference in some parts of parameter space (for example, the benchmark parameter set θA explored throughout the 760 

earlier results sections), this implementation is no silver bullet for averting overconfident parameter estimates. On the other 

hand, the weighted case introduced in Experiment 4 is consistently associated with much smaller Mahalanobis distances 

compared to either the tough or boosted cases. The apparent accuracy of the weighted case can be attributed to the likelihood-

based weighting and limits of acceptability methodology, as well as the decrease in precision due to drawing from a set of 

competing density estimates. 765 

 

 
3 This behavior is also observed in Figure D1A, which shows that the determinant exhibits a fixed pattern across parameter 

space. 
4 Note that Mahalnobis distance is a precision-weighted metric of distance, unlike Euclidean distance. These numbers should 

not be considered raw distance. 
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Figure 8: Comparative plots showing the performance of simulation-based inference of parameters and predicted quantities across 

a set of n=18 test data. We compare the results of Experiments 1 (‘base’ case), 2 (‘tough’ case), 3 (‘boosted’ case), and 4 (‘weighted’ 

case). Subplots (a) and (b) show the accuracy and precision of parameter inference. Accuracy is shown in subplot (a) via the 770 
Mahalanobis Distance of the posterior parameter density. Precision is shown in subplot (b) via the Determinant, |Σ|. Subplots (c) 

and (d) show the accuracy and precision of the posterior predictive check. Subplot (c) shows the average of the error, RMSEAve of 

streamflow ensembles relative to ‘truth’, which can be thought of as a measure of accuracy. Subplot (d) shows the standard deviation 

of the error, RMSEstd of streamflow ensembles, which can be thought of as a measure of precision. Values closer to the x-axis are 

more desirable. 775 

4.5.2 The precision and accuracy of posterior predictions 

Taking this one step further we can use the inferred parameter distributions to generate an ensemble of streamflow 

simulations using the LSTM and compare this to the observed streamflow (referred to as our posterior predictive check).  As 

shown in Fig. 8C and 8D, the posterior predictions are precise, and generally fairly accurate. Fig. 8C shows the average of the 

error (RMSEAve) between the simulated streamflow timeseries and the observed time series, with lower average error 780 

corresponding to greater accuracy. Streamflow prediction accuracy decreases between Experiments 1, 2, and 3. This is 

represented by the fact that the RMSEAVE increases nearly 3-fold across each of our experiments (median ~0.005 in best case, 
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~0.010 in best case, and ~0.015 in boosted case [scaled streamflow units]). The degradation in posterior predictive accuracy 

is related to degradation in the accuracy of parameter inference (Figure 8A). Fig. 8D shows the variability of the error 

(RMSESTD) between the simulated streamflow timeseries and the observed time series, with lower error variability 785 

corresponding to greater precision. We see that the central tendency of the RMSESTD of streamflow simulations for the base, 

tough, and boosted cases are all similar. Streamflow posterior predictions across all three experiments remained precise, in 

spite of the breakdown in the accuracy.  

In Experiment 4 (the weighted case), the posterior predictive accuracy (RMSEAVE) and the average variability 

(RMSESTD) is improved compared to Experiment 3. Improvement is seen in the outliers, where simulator configurations with 790 

a poor fit relative to observed data are assigned low or no weight in Experiment 4 based on the informal likelihood. Importantly, 

KGE was used in the calculation of the informal likelihood. So, conclusions about the accuracy and precision of posterior 

predictions associated with the four Experiments may differ as measured by KGE as opposed to RMSE.  

The multi-observation comparison helps us to generalize some insights. 1. Inference results are often desirable; in 

particular, SBI seems to result in precise parameter inference across all conditions. 2. Parameter inference with a well-trained 795 

surrogate simulator is precise, but not always suited for conducting inference on observations with an uncertain relationship 

to simulated data (as in Experiment 2). 3. The performance of posterior predictive checks is dependent on both the performance 

of the simulator and the neural density estimator. As such it can be a valuable tool in assessing the performance of parameter 

inference. 4. Although a density estimate derived from an ensemble of simulators (as in Experiment 3) may yield more accurate 

parameter inference, overconfident parameter estimates are a recalcitrant problem for some observed data. 5. In Experiment 800 

4, an approach to likelihood-weighting parameter estimates from SBI was demonstrated to overcome the problem of 

overconfidence in these controlled experiments. 

5 Discussion 

As users of hydrologic tools such as high-fidelity, process-based simulators, we are often interested in finding the 

model configuration(s) most consistent with watershed observations and established physical theory. In practice, this gives 805 

rise to uncertainty about whether a model is “adequate”, as measured by its predictive ability and structural interpretability 

(Gupta et al, 2012). In the special case where a correct model structure exists, the modeler’s task is to conduct a specification 

search (Leamer, 1978) to identify it; other candidate models inconsistent with observations and theory can be said to be 

“misspecified” (Cranmer et al., 2020). One example of misspecification in this work is underscored by the misfit between the 

process based ParFlow and the surrogate LSTM simulators. We call this special situation surrogate misspecification.  810 

Our research shows that using a misspecified surrogate to conduct simulation-based inference for a process-based 

hydrologic simulator can yield erroneous parameter estimates. These ‘overconfident’ estimates occur because the neural 

density estimator learns the conditional relationship between parameters and data only from the surrogate simulator. Thus, SBI 

explicitly infers inputs to the surrogate and not parameters of the process-based simulator. Given surrogate misspecification, 
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the inferred values of parameters may not retain their physical significance to the process-based simulator; this can be a barrier 815 

to the interpretability of those models identified by inference. 

We demonstrate that erroneous parameter estimates due to surrogate misspecification can be addressed through 

informal Bayesian model averaging (BMA). This approach to BMA applies a performance check – the informal likelihood – 

to weight and reject models identified by SBI. Notably, the likelihood and related limits of acceptability are chosen by the 

practitioner based on modelling goals. Thus, broadly, informal BMA belongs to the class of approaches to encode expert / 820 

domain knowledge into a deep learning framework (e.g Reichstein et al., 2019). More specifically, SBI conducts a preliminary 

search of parameter space for plausible model structures and configurations, and the likelihood test incorporates expert-defined 

information about model adequacy into the parameter estimate. Overconfident parameter estimates carry the risk of under-

representing the uncertainty of the inferences we draw form models. Our work shows that, with these two methods in 

combination, erroneously overconfident parameter estimates are less likely to occur than in standalone SBI. 825 

In our experiments we focused investigation on SBI and not the process based model.  Extending this methodology to 

observed data requires consideration of many additional sources of uncertainty compared to the synthetic case. Among these 

is much deeper uncertainty about which model structure(s) is (are) appropriate. In the synthetic experiments presented, the 

relationship between the model (the surrogate) and the data-generating process (ParFlow) is well-defined; the surrogate is 

learned directly from ParFlow. Yet for real hydrologic problems, physics-based models are nearly always simplified 830 

representations of real data-generating processes; stumbling upon a “true” representation is unlikely, even impossible. 

Moreover, physical parameters like hydraulic conductivity (K) and Manning’s roughness (M) are themselves conceptual 

quantities and are almost never known at the scale we care about, making estimates difficult to validate (Oreskes et al., 1994). 

In this real-world case, the modeler’s search may be for a set of adequate model structures and configurations (i.e. Gupta et. 

al, 2012), where adequacy is subjectively defined. Here, a reasonably good estimate of the hydrologic variable (i.e., 835 

streamflow) is often what watershed scientists strive for (Van Fraassen and others, 1980).  For completeness, a worked example 

demonstrating the estimation of parameters using the current model formulation and observed streamflow data from the Taylor 

basin is presented in Appendix E.  

The critic might suggest that not enough was done tailor the present analysis to real world data. We disagree on the 

grounds that our purpose here is to rigorously present and evaluate a method for parameter inference given well-defined 840 

constraints. The challenge of this goal is real and relevant. In fact, this work seems to show an upper bound for the performance 

of SBI where undiagnosed structural error exists. A novel model averaging approach inspired by Approximate Bayesian 

Averaging (BMA) and General Likelihood Uncertainty Estimation (GLUE) (Hoeting, 1999; Beven and Binley, 1992) is 

demonstrated to be an important check to SBI, in presented synthetic and real examples. Further comparison to observations 

would instead shift the focus of this work from the quality of the SBI and BMA methods to the quality of the underlying 845 

hydrologic simulator. Logical next steps to further extending this methodology to the real case are outlined below.  

Adding additional complexity to the training set for the surrogate simulator (i.e., exploring a larger number of 

parameters configurations, their spatial variability, or multiple forcing scenarios) may help yield better parameter estimates 
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and associated predictions. Many of the practitioners of simulation-based inference advocate packing as much complexity into 

models as possible (Alsing and Wandelt, 2019). High-resolution process-based simulators (such as ParFlow) can be used to 850 

explore the real-like behaviors of watersheds across a great number of variable and parameter configurations by leveraging 

deep-learned surrogates and SBI. Beyond the informal BMA evaluation of SBI presented here, it may also be important to 

control for the tradeoff between complexity and parsimony in this expanded set of model structures and configurations. This 

could be achieved using a framework similar to the Akaike Information Criterion (e.g. Schoups et al., 2008), which adds a 

penalty term related to the number of estimated physical parameters in the likelihood evaluation. A similar ‘penalty for 855 

complexity’ concept was explored in traditional applications of Bayesian Model Averaging for linear regression models 

through Occam’s Window (Madigan and Raftery, 1994). 

Including additional watershed observation types (i.e., groundwater, soil moisture) in the inference workflow could 

also improve estimates of the physical parameters for real systems, and the predictions associated with complex simulators. 

However, observations in hydrology – particularly about groundwater systems – are generally sparse. This presents a problem. 860 

One option is to observe that complexity better. New spatially distributed ‘big data’ products that leverage remote sensing to 

offer new opportunities to observe hydrologic variables like soil moisture (Mohanty et al., 2017; Petropoulos et al., 2015). The 

extension of the methodology to real-world observations will also need to consider the role of data quality, adequacy (Gupta 

et al., 2012), and disinformation (Beven and Westerberg, 2011) and the challenge of defining limits of acceptability regarding 

model performance.  865 

6 Conclusion 

Our investigation implements simulation-based inference (SBI) to determine parameters for a spatially distributed, 

process-based watershed simulator. We believe this research is among the first to apply contemporary SBI to watershed 

modeling. The implementation employed here has a couple of noteworthy features:  

a. We use deep learning to train a surrogate Long Short-Term Memory (LSTM) on the original physically based 870 

simulations (from ParFlow). This allows for quick and comprehensive exploration of simulation results for which we 

have corresponding observations, such as streamflow at a basin outflow in a watershed. 

b. A density-based neural network leverages the capacity of the surrogate to generate simulations quickly to learn a 

representation of the full conditional density, p(θ|Y), of parameters given data. This learned conditional density can 

be evaluated using observations to determine the parameter posterior density, p(θ|Y = YObs). This parameter posterior 875 

represents our ‘best guess’ of what the parameters for our simulator should be. 

We demonstrate that this approach to SBI can generate reasonable estimates of the parameters of a hydrologic 

simulator, ParFlow, through a set of synthetic experiments. We show in Experiment 1 (the best case) that SBI works well in 

controlled settings in which we assume that our surrogate LSTM simulator is accurate. Moreover, this experiment highlights 

how, once learned, the model of the conditional density can be used to determine the process-based parameters rapidly and 880 
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effectively for many observations without the need for additional process-based simulations. That’s particularly valuable when 

simulations are costly, as is often the case with high-resolution, transient simulators used in the field of watershed modeling. 

We show in Experiment 2 (the tough case) that SBI produces a set of probable parameters with precision in settings 

where the simulator does not represent the underlying system generating the observation perfectly. These inferred parameters 

are used to generate reasonable streamflow simulations relative to observations. However, the tough case shows that parameter 885 

inference is not always accurate with respect to the physics-based simulator that was used to train the surrogate. This 

undesirable characteristic (of precision but not accuracy, or ‘overconfidence’) arises from issues related to the structural 

adequacy of the simulator, which is well-recognized in the literature as an impediment for accurate parameter inference 

(Cranmer, 2020). The controlled nature of Experiment 2 explores the special case of ‘surrogate misspecification’.  This special 

case arises from a mismatch between the surrogate and the process-based simulations from ParFlow. In inference, surrogate 890 

misspecification gives rise to error in estimates of the physical parameters. We show that sources of this error can be quite 

difficult to diagnose, although conducting a posterior predictive check is a qualitative way of ascertaining the extent of 

simulator bias.  

In Experiments 3 and 4 (the boosted and weighted cases, respectively), we attempt to address the issue of 

‘overconfident’ parameter inference due to misspecification. In Experiment 3, we use an ensemble of ‘weak’ surrogate 895 

simulators (instead of just one ‘strong’ surrogate simulator) to learn the full conditional density. The underlying principle is 

that the behavior of an ensemble of surrogate simulators in aggregate may not be biased, even if each individual simulator has 

its own bias. This may ‘wash out’ the negative effects of surrogate misspecification on parameter inference. Evidence from 

the boosted case shows this approach reduces the occurrence of overconfident parameter estimates, but is not a silver bullet 

for conducting accurate inference.  900 

In Experiment 4 (the weighted case), the modeler assigns a "measure of belief" to parameter estimates from a set of 

competing conditional density models, reflecting their confidence in its validity. This measure of belief – or informal likelihood 

(i.e. Beven and Binley, 1992) – is used to weight and reject models identified by SBI. The underlying principle is that SBI 

conducts a preliminary search of parameter space for plausible model structures and configurations, and the likelihood test 

incorporates expert-defined information about model adequacy into the parameter estimate. The weighted case is demonstrated 905 

to solve the problem of overconfident parameter estimates introduced by surrogate misspecification.  

The results of Experiments 2, 3, and 4 demonstrate progress towards being able to implement SBI in hydrological 

domains subject to uncertainty we can benchmark (i.e., the misspecification of the surrogate). Additional work is needed to 

address deeper uncertainty about the structural adequacy of the underlying physics-based model. This uncertainty often exists 

in watershed modeling – due to (e.g.) natural heterogeneities in the subsurface, approximations in process parameterizations, 910 

and bias in the meteorological input data – that can seldom be fully ‘accounted for’. The notion of structural ‘adequacy’ is thus 

nearly always subjective (Gupta et. al, 2012). In many ‘real world’ applications, a calibrated estimate of the hydrologic variable 

(i.e., streamflow) is what watershed scientists strive for. Enhancing standalone SBI with the likelihood-weighting methodology 

introduced in Experiment 4 embraces this principle of subjective ‘adequacy’ and is broadly extendable to more complex 
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inference problems in watershed modeling. Where no models are identified as adequate, an obvious next step is to expand the 915 

simulator to explore more and different configurations of parameters and input variables.  

Appendix A The Process-Based Simulations (ParFlow) 

Table A1: The relationship between ParFlow and LSTM static inputs (e.g., parameters, θ), dynamic inputs (e.g., meteorological 

forcings, X), and dynamic outputs (e.g. streamflow, Y). ParFlow variables must be ‘compressed’ into lower-dimensional 

representations in order to be used in the LSTM.  920 

 ParFlow Description LSTM Description 

Parameters, θ a) 2-dimensional homogeneous Manning’s 

Roughness, M 

b) 3-dimensional heterogeneous Hydraulic 

Conductivity, K   

(Other static inputs, such as soil properties and 

land cover, are not used by LSTM) 

a) Scalar value, Ms, set for all 

values of M 

b) Scalar factor, Ks, multiplied 

by all values of K 

(Both are log transformed and re- 

normalized to be between 0  and 1) 

Dynamic 

Outputs, Y 

Hourly, 3D spatially distributed pressure field Daily, 1-dimensional discharge time 

series (length=350) at i,j location 

corresponding to USGS gage 

09110000, as follows: 

1. Gridded discharge calculated 

using surface pressure, 

slopes, Manning’s, resolution 

via the overland flow 

equation for each hourly time 

step (n=8,760) of one year of 

ParFlow results  

2. Slice at i,j location and 

calculate daily average 

3. Remove first 15 days of 

record (burn in time), and 

renormalize values between 0 

and 1 

Dynamic 

Inputs, X 

Hourly, 2D spatially distributed meteorological 

forcings, including: 

● DLWR: Long Wave Radiation [W.m-2] 

● DSWR: Short Wave Radiation [W.m-2] 

● Press: Atmospheric pressure [pa] 

● APCP: Precipitation [mm.s-1] 

● Temp: Air Temperature [K] 

● SPFH: Specific humidity [kg.kg-1] 

● UGRD: East-west wind speed [m.s-1] 

● VGRD: South-to-North wind speed 

[m.s-1] 

Daily, 1D time series (length=350) for 

each (n=8) forcing: 

 

(Except for APCP, forcings are 

averages taken over space and time for 

all hours (n=24) in each day. APCP is 

the sum over space and time for all 

hours (n=24) of precipitation each 

day.) 
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Table A2: ParFlow was run many times under different parameter configurations. This table shows the scalar factors used to modify 

spatially distributed Manning’s Coefficient and Hydraulic Conductivity. We call these factors Ks and Ms, respectively, to keep the 

distinction between them and ParFlow’s parameters clear. 

 

 

Ks  

(Scaling factor times whole 

domain)[unitless] 

Ms  

(Constant across domain), [h/m^(1/3)] 

Scalar 

Parameters 

0.001, 0.01, 0.025, 0.05, 0.075, 0.1, 

0.25, 0.5, 0.75, 1, 2.5, 5, 7.5, 10 

1e-8, 1e-7, 2.5e-7, 5e-7, 7.5e-7, 1e-6, 2.5e-6, 

5e-6, 7.5e-6, 1e-5, 2.5e-5, 5e-5, 1e-4 

 925 

 

Figure A1: Sensitivity of ParFlow-generated streamflow time series for water year 1995 to perturbations of Hydraulic Conductivity 

and Mannings. We show sensitivity holding each of Ks and Ms constant at 0.1 and 5e-6, respectively, while varying the other across 

the range of parameters explored in Table A2.  

Appendix B The Surrogate Simulator (LSTM) 930 

Table B1: Relevant notes on architecture, training, and hyperparameters for the surrogate LSTM simulator. 

 LSTM  Further Description 

Number of Epochs 300 Number of times iterating through training loops 

Batch Size 50 Batching during training 

Input Size 10 Number of input features 

Hidden Layers 1 Number of hidden layers 
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Hidden Size 10 Number of hidden nodes / layers 

Number of Classes 1 Number of nodes in output 

Objective Function MSE Mean Squared Error 

Optimizer Adam  

Learning Rate 0.001  

Train-Validation-

Test Split 

0.7, 0.2, 0.1 Simulations were divided into sets based on their parameters, 

such that each member characterizes the streamflow response 

(encoded as a year-long timeseries) to an individual pair of 

parameter values Ks and Ms. We conduct the train-validation-test 

split in a pseudo-Latin hypercube manner across parameters 

space. 

 

 

Figure B1: Plots show the train/validation and test split for the LSTM surrogate trained on n=183 ParFlow simulations. In (a), the 

locations in parameter space where ParFlow simulations were run. The surrogate is trained and tested at orange dots. In (b), a 935 
comparison of ParFlow to LSTM streamflow simulation generated at benchmark parameter set θA Ks~0.6, Ms~0.85. The fit between 

ParFlow and LSTM is explored more in the results. 

Appendix C Improved Components for SBI 

Deriving implicit statistical models using density estimation techniques is not new (Diggle and Gratton, 1984). 

However, these traditional approaches suffer from some shortcomings, including sample efficiency and inference quality, as 940 
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described further in Cranmer, Brehmer, and Louppe 2020. We show two components of the density based SBI workflow 

utilized here that have benefited due to recent innovations: Masked Autoencoders for Density Estimation (MADEs) and 

sequential neural posterior sampling. 

C.1 Masked Autoencoder for Density Estimation (MADE)  

While mixture density networks have a long operational history, there have been more recent innovations in using 945 

neural networks to learn and represent conditional probability distributions. This study utilizes a class of neural density 

estimators called Masked Autoregressive Flows (Alsing et al., 2019), which share some of the underlying principles described 

for Mixture Density Networks. Masked Autoregressive Flows arise from the principle that “any probability density can be 

factorized as a product of one-dimensional conditionals” via the chain rule (Alsing et al., 2019); these one-dimensional 

conditionals are parameterized by a fully connected neural network known as a Masked Autoencoder for Density Estimation 950 

(MADE) (Uria et al., 2016). Masked Autoregressive Flows are composed of ‘stacks’ of Masked Autoencoder for Density 

Estimations, to add flexibility (Papamakarios et al., 2018) . A detailed description of these methods is beyond the scope of this 

paper.  

C.2 Sequential Neural Posterior Estimation 

We use a sampling technique called Sequential Neural Posterior Estimation (SNPE) to speed up and improve the 955 

evaluation of a trained neural conditional density estimator. By evaluation, we here mean using data Y (most typically observed 

data, YObs) to generate a posterior estimate p(θ | Y = YObs) (step 4 in Sect. 3.5). The need for SNPE arises from the challenge 

that drawing simulation parameters from the full prior distribution is wasteful (Papamakarios et al., 2018; Lueckmann et al., 

2017; Greenberg et al., 2019). This is due to the fact that data simulated from some parts of parameter space have higher or 

lower posterior density for YObs. SNPE iteratively refines the posterior estimate to make inference more efficient and flexible, 960 

as described by Greenberg et al, 2019.   

Details related to the architectures, hyperparameters, training, and evaluation of neural density estimators are shown 

in Table C1. Decisions about hyperparameters were made via trial and error. It’s important to note that the goal of our work is 

not to create the most robust neural density estimator model, but to explore inference under a variety of different conditions.  

 965 

Table C1: Hyperparameters and model architecture for neural density estimation. See also (Tejero-Cantero et al., 2020). 

Hyper- parameter Value Significance 

Inference Method SNPE_C Sequential Neural Posterior Estimator (see text) 

Neural Density 

Model, qϕ(θ|Y) 

MAF Masked Autoregressive Flow (see text) 
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Hidden Features 10 number of hidden layers in each MADE of qϕ(θ|Y) 

Number of 

Transforms 

2 Number of flows (transforms) between MADEs in qϕ(θ|Y), MAF 

Prior_min, 

Prior_max 

0.0, 1.0 Minimum and Maximum possible values of qϕ(θ|Y), Ks and Ms 

Prior Function Uniform All values a priori equally possible in parameter space 

Number of 

simulations 

1000 Number of simulated {θ, Y} pairs; used to train qϕ(θ|Y) 

Number of samples 5000 Number of sampled {θ, Y} pairs; used to evaluate qϕ(θ|Y) 

Appendix D Inference for many observations, YObs_LSTM_i 

A trained neural density estimator can be used to infer the parameters of an observation without the need for additional 

simulation runs. In this section, we extend Experiment 1 (the ‘best’ case) to evaluate the posterior parameter density for many 

synthetic observations (YObs_LSTM_i) quickly and effectively. We use many parameter sets (θi) of Ks and Ms sampled uniformly 970 

across parameter space to generate an equivalent number of synthetic observations, where i=1, 2, …, 441.  
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Figure D1. Once the neural conditional density estimator is trained, it can be evaluated quickly and effectively given new data. This 975 
figure shows the performance of SBI of Mannings (Ms), and Hydraulic Conductivity (Ks) given synthetic streamflow data generated 

by the surrogate from across 441 locations across parameter space. Subplot (a) shows the Determinant, |Σ| of the posterior parameter 

estimate, which quantifies the precision of parameter inference. Subplot (b) shows the Mahalanobis distance,  between 

the inferred distribution and true parameter values, which quantifies the accuracy of inference. These values are shown across the 

entirety of parameter space investigated, where purple is better. The red star in subplots corresponds with benchmark location θA 980 
in parameter space of the analysis shown in Figure 3.  

 

SBI can infer the parameters from many diverse and different synthetic observations well, as shown in Figure D1. 

The precision of inference of the posterior parameter densities is explored in Figure D1A as a map of determinants across 

parameter space. Parameter inference is more precise (with a smaller determinant) in the center than at the edges of the 985 

parameter space; it is below our precision threshold of 1e-06 everywhere. Parameter inference is accurate across parameter 

space, as shown by the map of Mahalanobis Distance in Fig. D1B. There are some pockets of parameter space characterized 

by more- and less- accurate parameter inference. The structure of the Mahalanobis distances across parameter space doesn’t 

seem to be as well-defined as that of the determinant and are likely a consequence of randomness in the initialization of the 

neural density estimator (confirmed by many independent trials). We note that evaluating each of the synthetic observations 990 

in Fig. D1 took only a few seconds. 
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Figure D2. Posterior predictive check for many observations: Once parameters are inferred, the posterior can be drawn (n=50) to 

generate probabilistic streamflow ensembles. This figure shows the performance of streamflow ensembles derived from SBI at 441 995 
locations across parameter space. Subplot (a) shows the average of the error (RMSEAve) of streamflow ensembles relative to ‘truth’, 

which can be thought of as a measure of accuracy. Subplot (b) shows the standard deviation of the error (RMSEstd) of streamflow 

ensembles, which can be thought of as a measure of precision. Streamflow ensembles are evaluated against the ‘true’ synthetic 

streamflow time series generated by the surrogate simulator, where blue is better.  

 1000 

The posterior predictive check shows that streamflow characterization is generally both precise and accurate. This 

required drawing a subset of parameters from each of the 441 posterior parameter densities represented as points in Fig. D1 

and generating an ensemble of simulated streamflow time series using the surrogate simulator. The accuracy of the posterior 

predictions is explored in Fig. D2A as a map across parameter space. In general, the posterior predictions have an average 

error of less than 0.01. Accuracy is highest in the middle of the parameter space and seems to degrade towards the upper 1005 

boundaries where parameters Ks and Ms are large. The precision of the posterior predictions is explored in Fig. D2B as a map 

across parameter space. In general, the posterior predictions are precise, with standard deviation of the error less than 0.01. 

We note that both the average and standard deviation of error increase at large parameter values, in particular large values of 

hydraulic conductivity. Overall, Fig. D1 and D2 show that SBI can reliably infer parameters and characterize streamflow 

processes for many streamflow observations that span the parameter space we investigated. 1010 

 

Appendix E Inference on non-synthetic observations at the Taylor River 
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The informal BMA methodology is suited to assessing the adequacy of model structures and configurations in the real-

world case. In Figure E1, inference is conducted on the observed streamflow timeseries for water year 1995 from the Taylor 1015 

River gage 09110000 (red). The figure shows the posterior predictive check with confidence intervals from standalone SBI 

(blue), as well as the “persistence” baseline (orange). Model configurations scoring less than persistence (defined by setting 

next week’s predicted data equal to today’s observed data) are considered not credible and assigned a weight of zero. Note 

that standalone SBI does not perform well relative to persistence (KGE = 0.94). The culprit is the timing of peak simulated 

flows, which occur on average some 44 days before the peak observation and 51 days before persistence. With no models 1020 

superior to persistence, the BMA methodology returns an empty set; no model structures (LSTM surrogates) or configurations 

(parameter sets) yield predications that are “reasonably good”. In fact, no model structures or configurations superior to 

persistence exist in the full space of possible combinations of M and K, as shown by the confidence intervals in grey. We 

emphasize to the reader that the BMA methodology results in a desirable outcome: all models identified by standalone SBI are 

rejected, and overconfident predictions and parameter estimates are avoided.  1025 

 

Figure E1. Time series comparing the observed streamflow for water year 1995 (red) with the persistence baseline (orange), posterior 

predictive check from standalone SBI (blue), and simulations drawn from the full parameter space (gray).  
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